CERTIFICATE OF CALIBRATION # OM2024-3 FOR BRÜEL & KJÆR HANDHELD ANALYZER

Model 2250

With Microphone 4189 With Preamplifier ZC0032 Serial No. 2590393 ID No. N/A Serial No. 2584701 ID No. 6520

Customer: Odin Metrology, Inc. Thousand Oaks, CA 91320

was tested and met Brüel & Kjær specifications at the points tested and as outlined in IEC 61672-3:2006 Class 1

on 16 DEC 2024

HAROLD LYNCH BY Service Manager

P.O. No. N/A

As received and left condition: Within Specification. Re-calibration due on: 16 DEC 2025

Certifi	fied References*							
Mfg.	Type	Serial No.	Cal Date	Due Date				
B&K	1051	1846829	03 SEP 2024	03 SEP 2025				
B&K	2636	1601487	16 MAY 2024	16 MAY 2025				
B&K	4226	3274134	27 NOV 2024	27 NOV 2025				
B&K	4231	2094472	14 FEB 2024	14 FEB 2025				
HP	34401A	US36071531	05 JUN 2024	05 JUN 2025				
HP	3458A	2823A07179	23 AUG 2024	23 AUG 2025				
	Performed in Compliance with ANSI, NCSL Z-540-1, 1994 and ISO 17025,							
	ISO 9001:2015 Certification NQA No. 11252							
	*References are traceat	le to NIST (National Ir	stitute of Standards and Tecl	nnology).				
		1 1						

Note: For calibration data see enclosed pages.

The data represent both "as found" and "as left" conditions.

Reference Test Procedure: ACCT Procedure 2250-Light-2270 Version 3.2.1. Rev. 1/29/14

Temperature	Relative Humidity	Barometric Pressure
23 °C	36 %	993.11 hPa

Note: This calibration report shall not be reproduced, except in full, without written consent by Odin Metrology, Inc. Signed: Just Grat

ODIN METROLOGY, INC.

CALIBRATION OF BRÜEL & KJÆR INSTRUMENTS 3537 OLD CONEJO ROAD, SUITE 108 THOUSAND OAKS CA 91320 PHONE: (805) 375-0830 FAX: (805) 375-0405

3537 Old Conejo Road, Suite 108 Thousand Oaks, CA 91320 Phone: (805) 375-0830, Fax: (805) 375-0405 www.OdinMetrology.com

Calibration data for

Brüel & Kjær Handheld Analyzer Type 2250# 2590393, ID# N/A With Microphone 4189# 2584701 and Preamplifier ZC0032# 6520 Performed on December 16, 2024 for

Odin Metrology, Inc.

PO#: N/A Certificate#: OM2024-3 Calibration performed by: HL

Environmental Conditions Relative humidity: 36% Ambient temperature: 23°C Ambient pressure: 993.11 hPa

The following calibration was performed per ACCT Procedure 2250-Light-2270 version 3.2.1. nt both the "A

Page No.	Test	IEC Section	Result
	Sound Level Meter (IEC 616	72 Class 1)	
3	Internal Clock	Reference Only	See Data
3	Sensitivity Verification with Acoustic Calibrator	3 § 9	See Data
3	Acoustic Frequency Response with Microphone	3 § 11	Pass
3	Self-Generated Noise	3 § 10	See Data
4	Output Impedance with Shorted Output	2 § 9.18	Pass
4	AC Full Scale Output Voltage	Reference Only	See Data
4	DC Full Scale Output Voltage	Reference Only	See Data
4	Reset	2 § 9.17	Pass
4	Overload Indication	3 § 18	Pass
5	DC Linearity	Reference Only	See Data
5	Peak-C Sound Level	3 § 17	Pass
5	Decay Time Constants	2 § 9.11	Pass
6	Difference in Indication	3 § 13	Pass
	Frequency Response	3 § 12	
6	A-Weighted	•	Pass
7	C-Weighted		Pass
8	Z-Weighted		Pass
	Single Toneburst Response (Fast)	3 § 16	
9	A-Weighted	-	Pass
9	C-Weighted		Pass
10	Z-Weighted		Pass
	Single Toneburst Response (Slow)	3 § 16	
10	A-Weighted	-	Pass
10	C-Weighted		Pass
11	Z-Weighted		Pass
11	SEL Response to Repeated Tonebursts	1 § 5.9	Pass
12	Level Linearity	3 § 14, 1 § 5.5.6	Pass
	RTA Octave Filter (IEC 6126		
	Level Verification of Filter+SLM	Reference Only	
14	1/1 Octave		Pass
14	1/3 Octave		Pass
	Filter Check	Reference Only	
15	1/1 Octave		Pass
15	1/3 Octave		Pass
16	Relative Attenuation (1/1 Octave)	§ 5.3	Pass

The expanded uncertainties stated in this document are the maximum expanded uncertainties permitted by IEC 61672-1. Odin Metrology's actual expanded uncertainties are less than or equal to the values stated herein.

Calibration Data for 2250# 2590393 ID# N/A

Odin Metrology, Inc.

Internal Clock

Date and time are transferred from SLM, then the SLM date and time are set according to Odin Metrology's clock and the date and time are transferred from the SLM a second time. Time zones (with minor simplifications) and DST are obeyed.

Local Date/Time: Date and time according to Odin Metrology's clock (Pacific Standard Time) at the time of the clock setting

Location: US state or other location for which the SLM clock is set (some time zone simplifications are made)

UTC Offset: UTC offset for the given location

Daylight Saving Time: whether DST is currently observed for the given location

SLM Clock Before Set: readouts of the SLM's system date and time before any changes are made

SLM Clock After Set: readouts of the SLM's system date and time after setting

Local (Pacific Standard Time)		Location	UTC Offset	Daylight	SLM Clock	Before Set	SLM Cloc	k After Set
Date	Time	Location	(Hr:Min)	Saving Time	Date	Time	Date	Time
12/16/2024	12:48:20 PM	California	-7:00	No	'12/16/2024	01:51:36 PM	11/19/2019	'12/16/2024

Sensitivity Verification with Acoustic Calibrator (IEC 61672-3 § 9)

A sound level calibrator is mounted on the sound level meter and the internal calibration is started. The SLM indication is recorded before and after calibration.

Calibrator Frequency: the frequency of the signal generated by the sound level calibrator

Calibrator SPL: the SPL of the signal generated by the sound level calibrator

SLM SPL Before: SLM indication before internal calibration sequence

SLM SPL After: SLM indication after internal calibration sequence (note: ideal value is 93.85 dB due to free-field correction of 0.15 dB)

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor *k*=2) *Performed with microphone 4189# 2584701. preamplifier ZC0032# 6520. and calibrator 4231# 2094472.*

i chonnea with m		100# 2004101, preditipiliter 200002# 0020,				
Calibrator	Calibrator	SLM SPL	SLM SPL	Uncertainty		
Frequency (Hz)	SPL (dB)	Before (dB)	After (dB)	(dB)		
1.000.0	94.0	93.67	93.85	0.40		

Acoustic Frequency Response with Microphone (61672-3 § 11)

The acoustical frequency response is tested using a multifunction acoustical calibrator type 4226 in C frequency weighting. If a windscreen is used, these data are to be corrected.

Frequency: the frequency of the signal to the sound level meter (frequency of 4226 multifunction acoustic calibrator)

Data Found: the value the sound level meter actually indicates (this is a pressure measurement)

FF Corr: free-field correction for microphone to be added to displayed SLM (pressure) value

Corrected Response: SLM's reading plus the correction indicated

Nominal Value: what the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Uncertainty: maximum expanded uncertainty of measurement according to IEC with approximately 95% confidence level (coverage factor Deviation: the difference between the nominal value and the data found

Performed with microphone 4189# 2584701 preamplifier ZC0032# 6520, and calibrator 4226# 3274134.

	Deviation	Uncertainty	nce (dB)	Tolerar	Nominal	Corrected	FF Corr.	Data	Frequency
Pass/Fai	(dB)	(dB)	Maximum	Minimum	Value (dB C)	Response (dB)	(dB)	Found (dB C)	(Hz)
Pass	-0.09		92.49	89.49	90.99	90.90	0.00	90.90	31.5
Pass	-0.07	0.50	94.18	92.18	93.18	93.11	0.00	93.11	63.0
Pass	-0.13		94.83	92.83	93.83	93.70	0.00	93.70	125.0
Pass	-0.13	0.40	95.00	93.00	94.00	93.87	0.00	93.87	250.0
Pass	-0.15	0.40	95.03	93.03	94.03	93.88	0.00	93.88	500.0
				ference——	Re				1,000.0
Pass	0.13		94.83	92.83	93.83	93.96	0.36	93.60	2,000.0
Pass	0.50	0.60	94.18	92.18	93.18	93.68	1.21	92.47	4,000.0
Pass	1.01		92.49	88.49	90.99	92.00	3.62	88.38	8,000.0
Pass	1.22	1.00	89.76	82.76	87.76	88.98	6.51	82.47	12,500.0
Pass	1.20	1.00	87.97	69.47	85.47	86.67	7.59	79.08	16,000.0

Self-Generated Noise (61672-3 § 10)

For A-weighting, the noise is measured with the microphone installed and an acoustic chamber on the microphone which eliminates ambient noise. For C- and Z-weighting, the input is terminated with a shorted dummy microphone of equal capacitance.

Frequency Weighting: the frequency weighting setting on the sound level meter

Typical Noise: the typical self-generated noise level according to the manufacturer

Data Found: the 30-second Leq value the sound level meter indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Frequency	Typical	Data	Uncertainty
Weighting	Noise (dB)	Found (dB)	(dB)
A	16.60	17.91	
С	12.90	13.93	0.003
Z	25.50	18.90	

Output Impedance with Shorted Output (61672-2 § 9.18)

A reference signal is applied to the sound level meter and the outputs are shorted. The indicated level may not be affected by more than the specified tolerance.

Frequency: the frequency of the signal to the sound level meter

Input Level: the level (amplitude) of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate

Tolerance: the acceptable difference from nominal, including the stated uncertainty, for what the sound level meter should indicate Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Frequency	Input	Nominal	Tolerance	Data	Uncertainty	Deviation	Pass/Fail
(kHz)	Level (dB)	Value (dB)	(± dB)	Found (dB)	(dB)	(dB)	
1.0	94.0	94.0	0.10	94.00	0.10	0.00	Pass

AC Full Scale Output Voltage

The sound level meter is set up to indicate full-scale on the display and the AC output is measured. Input frequency is 1,000 Hz. SPL Reading: the input to the sound level meter is adjusted so that it indicates this full-scale value

Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor *k*=2) SPL Data Uncertainty

Reading (dB)	Found (mV)	(mV)
140.00	4,241.77	0.10

DC Full Scale Output Voltage

The sound level meter is set up to indicate full-scale on the display and the DC output is measured. Input frequency is 1,000 Hz.

SPL Reading: the input to the sound level meter is adjusted so that it indicates this full-scale value

Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

SPL		Data	Uncertainty
	Reading (dB)	Found (mV)	(mV)
	140.00	2,809.82	0.10

Reset (IEC 61672-2 § 9.17)

It is verified that the display resets after pressing the reset button on the SLM. The initial input level is FSD.

Before: displayed value before pressing the reset key

After: displayed value after pressing the reset key

Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Before (dB)	After (dB)	Tolerance (< dB)	Uncertainty (dB)	Pass/Fail
 119.70	15.58	50.0	0.003	Pass

Overload Indication (IEC 61672-3 § 18)

The first Leq indication of overload at a level higher than FSD-1 dB is recorded for both positive- and negative-one-half-cycle signals at 4.0 kHz. The difference between the two levels may not exceed the specified tolerance.

Overload Level: input signal level (amplitude) at which the meter was found to overload for the specified input signal type

Difference: difference between the overload levels for the positive and negative half-cycle signal inputs

Tolerance: the acceptable difference, including the stated uncertainty, between positive and negative overload levels according to IEC 61672

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Overload Level (dB)		Difference Tolerance		Uncertainty	Pass/Fail	
Positive	Negative	(dB)	(≤ dB)	(dB)	Fass/Faii	
139.33	139.81	0.48	1.5	0.3	Pass	

Calibration Data for 2250# 2590393 ID# N/A

DC Linearity

The sound level meter is set up to indicate full-scale on the display and the DC-output voltage is recorded in decreasing 10-dB steps.

Rel. Input Level: the level (amplitude) of the signal to the sound level meter relative to the reference of full-scale

Data Found: the measured DC-output from the SLM

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Sensitivity: the calculated sensitivity based on the DC-outputs at the highest and lowest levels indicated

Rel. Input	Data	Uncertainty	Sensitivity
Level (dB)	Found (mV)	(mV)	(mV/dB)
0.0	2809.83		
-10.0	2610.59		
-20.0	2409.19		
-30.0	2208.26		
-40.0	2007.87	0.40	
-50.0	1807.54	0.40	
-60.0	1606.47		20.06
-70.0	1406.00		
-80.0	1205.02		
-90.0	1004.37		
-100.0	803.62		
-110.0	605.53	0.05	
-120.0	427.28		

Peak-C Sound Level (IEC 61672-3 §17)

The sound level meter's peak-C response to single one-cycle and positive- and negative-going half-cycle sinusoidal signals is measured. Input Level: the steady-state level (amplitude) of the signal to the sound level meter from which the one- and half-cycle signals are extracted Cycles in Test Signal: the type of burst used (one period, positive half period, or negative half period)

Frequency: the frequency of the signal to the sound level meter

Nominal Value: what the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable difference from nominal, including the stated uncertainty, for what the sound level meter should indicate L_{Coeak} Found: the peak-C sound level value indicated on the sound level meter

Data Found: the difference between the peak-C sound level and the steady-state C-weighted sound level as indicated by the sound level meter (L_{Cpeak} - L_{C})

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

-	Input Level	Cycles in	Frequency	Nominal	Tolerance	L_{Cpeak}	Data	Uncertainty	Deviation	Pass/Fail
_	(dB C)	Test Signal	(Hz)	Value (dB)	(± dB)	Found (dB)	Found (dB)	(dB)	(dB)	r aborr an
		One	8,000.00	3.40	2.00	135.29	3.29		-0.11	Pass
	132.00	Positive 1/2	500.00	2.40	1.00	134.03	2.03	0.40	-0.37	Pass
		Negative 1/2	500.00	2.40	1.00	134.04	2.04		-0.36	Pass

Decay Time Constants for Time Weightings Fast and Slow (IEC 61672-2 § 9.11)

The decay rate of the display value on the sound level meter is measured after a steady 4.0 kHz signal is removed.

Time Weighting: the time weighting setting on the sound level meter

Nominal Rate: the decay rate the sound level meter should exhibit according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Measured Rate: the actual decay rate measured on the sound level meter

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

_				i falao alla allo	aata loana			
_	Time	Nominal	Tolerance (dB/s)		Measured	Uncertainty	Deviation	Pass/Fail
_	Weighting	Rate (dB/s)	Minimum	Maximum	Rate (dB/s)	(dB/s)	(dB/S)	Fass/Fall
	Fast	N/A	27.00	N/A	40.74	2.00	N/A	Pass
	Slow	4.35	3.80	4.90	4.60	0.40	0.25	Pass

Difference in Indication (IEC 61672-3 § 13)

With reference to fast time weighting and A frequency weighting at the SLM reference level indicated, the measurements of all other frequency weighting parameters and all other time weighting parameters may not differ by more than the specified tolerance.

Time Weighting: time weighting setting on the SLM

Frequency Weighting: frequency weighting setting on the SLM

Input Level: the level (amplitude) of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable difference from nominal, including the stated uncertainty, for what the sound level meter should indicate Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Time	Frequency	Input	Nominal	Tolerance	Data	Uncertainty	Deviation	Pass/Fail
Weighting	Weighting	Level (dB)	Value (dB)	(± dB)	Found (dB)	(dB)	(dB)	
	A			-Reference—			––––Refe	rence———
Fast	С			0.2	94.00	0.1	0.00	Pass
	Z	94.0		0.2	94.00		0.00	Pass
	A		94.0		94.00		0.00	Pass
Slow	С			0.1	94.00	0.1	0.00	Pass
	Z				94.00		0.00	Pass

A-Frequency-Weighted Frequency Response (61672-3 § 12)

The sound level meter's frequency response is recorded by varying the frequency as specified. The reference level is 45 dB less than full scale at 1.0 kHz.

Frequency: the frequency of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672 (this is relative to the reference value at 1.0 kHz) Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Dece/E-il	Deviation	Uncertainty	Data	nce (dB)		Nominal	Frequency
Pass/Fail	(dB)	(dB)	Found (dB)	Maximum	Minimum	Value (dB)	(Hz)
Pass	1.32		-69.11	-67.4	N/A	-70.4	10.0
Pass	0.37		-63.00	-60.9	N/A	-63.4	12.6
Pass	0.18		-56.51	-54.7	-60.7	-56.7	15.8
Pass	-0.15		-50.60	-48.5	-52.5	-50.5	20.0
Pass	-0.09		-44.79	-42.7	-46.2	-44.7	25.1
Pass	0.00		-39.44	-37.9	-40.9	-39.4	31.6
Pass	0.05	0.50	-34.58	-33.6	-35.6	-34.6	39.8
Pass	0.02	0.50	-30.20	-29.2	-31.2	-30.2	50.1
Pass	0.00		-26.19	-25.2	-27.2	-26.2	63.1
Pass	0.04		-22.46	-21.5	-23.5	-22.5	79.4
Pass	-0.02		-19.16	-18.1	-20.1	-19.1	100.0
Pass	0.00		-16.10	-15.1	-17.1	-16.1	125.9
Pass	0.02		-13.33	-12.4	-14.4	-13.4	158.5
Pass	0.01		-10.86	-9.9	-11.9	-10.9	199.5
Pass	0.01		-8.62	-7.6	-9.6	-8.6	251.2
Pass	0.02		-6.59	-5.6	-7.6	-6.6	316.2
Pass	0.03	0.40	-4.78	-3.8	-5.8	-4.8	398.1
Pass	0.03	0.40	-3.20	-2.2	-4.2	-3.2	501.2
Pass	0.04		-1.86	-0.9	-2.9	-1.9	631.0
Pass	0.03		-0.79	0.2	-1.8	-0.8	794.3
		nce———	Refere			0.0	1,000.0
Pass	0.07	0.40	0.66	1.6	-0.4	0.6	1,258.9
Pass	0.07		1.05	2.0	0.0	1.0	1,584.9
Pass	0.07		1.27	2.2	0.2	1.2	1,995.3
Pass	0.08		1.35	2.3	0.3	1.3	2,511.9
Pass	0.08		1.28	2.2	0.2	1.2	3,162.3
Pass	0.09	0.60	1.06	2.0	0.0	1.0	3,981.1
Pass	0.10		0.65	2.0	-1.0	0.5	5,011.9
Pass	0.09		-0.03	1.4	-2.1	-0.1	6,309.6
Pass	0.07		-1.04	0.4	-3.6	-1.1	7,943.3
Pass	-0.05		-2.54	-0.5	-5.5	-2.5	10,000.0
Pass	-0.38		-4.70	-2.3	-9.3	-4.3	12,589.3
Pass	-0.84	1.00	-7.44	-4.1	-22.6	-6.6	15,848.9
Pass	0.46		-8.86	-6.3	N/A	-9.3	19,952.6

C-Frequency-Weighted Frequency Response (61672-3 § 12)

The sound level meter's frequency response is recorded by varying the frequency as specified. The reference level is 45 dB less than full scale at 1.0 kHz.

Frequency: the frequency of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672 (this is relative to the reference value at 1.0 kHz) Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Frequency	Nominal	Tolera	nce (dB)	Data	Uncertainty	Deviation	Dece/Ee
(Hz)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	Pass/Fail
10.0	-14.3	N/A	-11.3	-14.46		-0.13	Pass
12.6	-11.2	N/A	-8.7	-11.40		-0.15	Pass
15.8	-8.5	-12.5	-6.5	-8.50		0.03	Pass
20.0	-6.2	-8.2	-4.2	-6.39		-0.15	Pass
25.1	-4.4	-5.9	-2.4	-4.42		-0.01	Pass
31.6	-3.0	-4.5	-1.5	-2.93		0.08	Pass
39.8	-2.0	-3.0	-1.0	-1.95	0.50	0.05	Pass
50.1	-1.3	-2.3	-0.3	-1.21	0.50	0.08	Pass
63.1	-0.8	-1.8	0.2	-0.78		0.04	Pass
79.4	-0.5	-1.5	0.5	-0.48		0.03	Pass
100.0	-0.3	-1.3	0.7	-0.27		0.03	Pass
125.9	-0.2	-1.2	0.8	-0.15		0.02	Pass
158.5	-0.1	-1.1	0.9	-0.07		0.02	Pass
199.5	0.0	-1.0	1.0	0.01		0.04	Pass
251.2	0.0	-1.0	1.0	0.04		0.04	Pass
316.2	0.0	-1.0	1.0	0.06		0.04	Pass
398.1	0.0	-1.0	1.0	0.07	0.40	0.04	Pass
501.2	0.0	-1.0	1.0	0.07	0.40	0.04	Pass
631.0	0.0	-1.0	1.0	0.06		0.03	Pass
794.3	0.0	-1.0	1.0	0.06		0.04	Pass
1,000.0	0.0			Refere	nce———		
1,258.9	0.0	-1.0	1.0	0.03	0.40	0.06	Pass
1,584.9	-0.1	-1.1	0.9	-0.02		0.07	Pass
1,995.3	-0.2	-1.2	0.8	-0.10		0.07	Pass
2,511.9	-0.3	-1.3	0.7	-0.22		0.08	Pass
3,162.3	-0.5	-1.5	0.5	-0.42		0.08	Pass
3,981.1	-0.8	-1.8	0.2	-0.73	0.60	0.09	Pass
5,011.9	-1.3	-2.8	0.2	-1.20		0.09	Pass
6,309.6	-2.0	-4.0	-0.5	-1.91		0.09	Pass
7,943.3	-3.0	-5.5	-1.5	-2.95		0.06	Pass
10,000.0	-4.4	-7.4	-2.4	-4.45		-0.04	Pass
12,589.3	-6.2	-11.2	-4.2	-6.63		-0.39	Pass
15,848.9	-8.5	-24.5	-6.0	-9.37	1.00	-0.84	Pass
19,952.6	-11.2	N/A	-8.2	-10.79		0.46	Pass

Z-Frequency-Weighted Frequency Response (61672-3 § 12)

The sound level meter's frequency response is recorded by varying the frequency as specified. The reference level is 45 dB less than full scale at 1.0 kHz.

Frequency: the frequency of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672 (this is relative to the reference value at 1.0 kHz) Tolerance: the acceptable range, including the stated uncertainty, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Frequency	Nominal	Tolera	nce (dB)	Data	Uncertainty	Deviation	Pass/Fail
(Hz)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	Fass/Fall
10.0		N/A	3.0	0.07		0.07	Pass
12.6		N/A	2.5	-0.08		-0.08	Pass
15.8		-4.0	2.0	-0.05		-0.05	Pass
20.0		-2.0	2.0	0.10		0.10	Pass
25.1		-1.5	2.0	-0.12		-0.12	Pass
31.6		-1.5	1.5	-0.01		-0.01	Pass
39.8		-1.0	1.0	0.02	0.50	0.02	Pass
50.1		-1.0	1.0	-0.01	0.50	-0.01	Pass
63.1		-1.0	1.0	-0.04		-0.04	Pass
79.4		-1.0	1.0	-0.01		-0.01	Pass
100.0		-1.0	1.0	0.00		0.00	Pass
125.9		-1.0	1.0	0.00		0.00	Pass
158.5		-1.0	1.0	0.01		0.01	Pass
199.5		-1.0	1.0	0.04		0.04	Pass
251.2		-1.0	1.0	0.03		0.03	Pass
316.2		-1.0	1.0	0.03		0.03	Pass
398.1	0.0	-1.0	1.0	0.03	0.40	0.03	Pass
501.2	0.0	-1.0	1.0	0.04	0.40	0.04	Pass
631.0		-1.0	1.0	0.04		0.04	Pass
794.3		-1.0	1.0	0.04		0.04	Pass
1,000.0				Refere	nce———		
1,258.9		-1.0	1.0	0.06	0.40	0.06	Pass
1,584.9		-1.0	1.0	0.07		0.07	Pass
1,995.3		-1.0	1.0	0.07		0.07	Pass
2,511.9		-1.0	1.0	0.07		0.07	Pass
3,162.3		-1.0	1.0	0.08		0.08	Pass
3,981.1		-1.0	1.0	0.09	0.60	0.09	Pass
5,011.9		-1.5	1.5	0.10		0.10	Pass
6,309.6		-2.0	1.5	0.09		0.09	Pass
7,943.3		-2.5	1.5	0.06		0.06	Pass
10,000.0		-3.0	2.0	-0.06		-0.06	Pass
12,589.3		-5.0	2.0	-0.38		-0.38	Pass
15,848.9		-16.0	2.5	-0.81	1.00	-0.81	Pass
19,952.6		N/A	3.0	0.31		0.31	Pass

Single Toneburst Response (Fast Time Weighting, A Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672

Data Found: the value the sound level meter actually indicates; equal to LAFmax(toneburst)-LAF(steady-state)

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolera	nce (dB)	Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	
1,000.00	0.0	-0.5	0.5	-0.04		-0.04	Pass
500.00	-0.1	-0.6	0.4	-0.13		-0.03	Pass
200.00	-1.0	-1.5	-0.5	-1.04		-0.04	Pass
100.00	-2.6	-3.6	-1.6	-2.67		-0.07	Pass
50.00	-4.8	-5.8	-3.8	-4.89		-0.09	Pass
20.00	-8.3	-9.3	-7.3	-8.39	0.20	-0.09	Pass
10.00	-11.1	-12.1	-10.1	-11.23	0.20	-0.13	Pass
5.00	-14.1	-15.1	-13.1	-14.17		-0.07	Pass
2.00	-18.0	-19.5	-17.0	-18.10		-0.10	Pass
1.00	-21.0	-23.0	-20.0	-21.12		-0.12	Pass
0.50	-24.0	-26.5	-23.0	-24.16		-0.16	Pass
0.25	-27.0	-30.0	-26.0	-27.18		-0.18	Pass

Single Toneburst Response (Fast Time Weighting, C Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{AFmax(toneburst)}$ - $L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolera	Tolerance (dB)		Uncertainty	Deviation	Pass/Fail			
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)				
1,000.00	0.0	-0.5	0.5	0.17		0.17	Pass			
500.00	-0.1	-0.6	0.4	0.08		0.18	Pass			
200.00	-1.0	-1.5	-0.5	-0.83		0.17	Pass			
100.00	-2.6	-3.6	-1.6	-2.45		0.15	Pass			
50.00	-4.8	-5.8	-3.8	-4.68		0.12	Pass			
20.00	-8.3	-9.3	-7.3	-8.17	0.20	0.13	Pass			
10.00	-11.1	-12.1	-10.1	-11.01	0.20	0.09	Pass			
5.00	-14.1	-15.1	-13.1	-13.94		0.16	Pass			
2.00	-18.0	-19.5	-17.0	-17.85		0.15	Pass			
1.00	-21.0	-23.0	-20.0	-20.83		0.17	Pass			
0.50	-24.0	-26.5	-23.0	-23.81		0.19	Pass			
0.25	-27.0	-30.0	-26.0	-26.76		0.24	Pass			

Single Toneburst Response (Fast Time Weighting, Z Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{AFmax(toneburst)}$ - $L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolerance (dB)		Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	
1,000.00	0.0	-0.5	0.5	0.00		0.00	Pass
500.00	-0.1	-0.6	0.4	-0.09		0.01	Pass
200.00	-1.0	-1.5	-0.5	-1.00		0.00	Pass
100.00	-2.6	-3.6	-1.6	-2.62		-0.02	Pass
50.00	-4.8	-5.8	-3.8	-4.86		-0.06	Pass
20.00	-8.3	-9.3	-7.3	-8.34	0.20	-0.04	Pass
10.00	-11.1	-12.1	-10.1	-11.18	0.20	-0.08	Pass
5.00	-14.1	-15.1	-13.1	-14.11		-0.01	Pass
2.00	-18.0	-19.5	-17.0	-18.05		-0.05	Pass
1.00	-21.0	-23.0	-20.0	-21.04		-0.04	Pass
0.50	-24.0	-26.5	-23.0	-24.03		-0.03	Pass
0.25	-27.0	-30.0	-26.0	-27.05		-0.05	Pass

Single Toneburst Response (Slow Time Weighting, A Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to L_{AFmax(toneburst)}-L_{AF(steady-state)}

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolerance (dB)		Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	
1,000.0	-2.0	-2.5	-1.5	-2.04		-0.04	Pass
500.0	-4.1	-4.6	-3.6	-4.10		0.00	Pass
200.0	-7.4	-7.9	-6.9	-7.48		-0.08	Pass
100.0	-10.2	-10.7	-9.7	-10.28		-0.08	Pass
50.0	-13.1	-13.6	-12.6	-13.19	0.20	-0.09	Pass
20.0	-17.0	-17.5	-16.5	-17.11		-0.11	Pass
10.0	-20.0	-20.5	-19.5	-20.10		-0.10	Pass
5.0	-23.0	-23.5	-22.5	-23.10		-0.10	Pass
2.0	-27.0	-27.5	-26.5	-27.09		-0.09	Pass

Single Toneburst Response (Slow Time Weighting, C Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{AFmax(toneburst)}-L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2) Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolera	nce (dB)	Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	
1,000.0	-2.0	-2.5	-1.5	-1.83		0.17	Pass
500.0	-4.1	-4.6	-3.6	-3.89		0.21	Pass
200.0	-7.4	-7.9	-6.9	-7.27		0.13	Pass
100.0	-10.2	-10.7	-9.7	-10.07		0.13	Pass
50.0	-13.1	-13.6	-12.6	-12.98	0.20	0.12	Pass
20.0	-17.0	-17.5	-16.5	-16.89		0.11	Pass
10.0	-20.0	-20.5	-19.5	-19.88		0.12	Pass
5.0	-23.0	-23.5	-22.5	-22.88		0.12	Pass
2.0	-27.0	-27.5	-26.5	-26.84		0.16	Pass

Single Toneburst Response (Slow Time Weighting, Z Frequency Weighting) (61672-3 § 16)

The sound level meter's response to single tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale. Toneburst Duration: the length of time each burst lasts

Nominal Value: the value sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{AFmax(toneburst)}-L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

Toneburst	Nominal	Tolerance (dB)		Data	Uncertainty	Deviation	Pass/Fail
Duration (ms)	Value (dB)	Minimum	Maximum	Found (dB)	(dB)	(dB)	
1,000.0	-2.0	-2.5	-1.5	-2.00		0.00	Pass
500.0	-4.1	-4.6	-3.6	-4.06		0.04	Pass
200.0	-7.4	-7.9	-6.9	-7.44		-0.04	Pass
100.0	-10.2	-10.7	-9.7	-10.24		-0.04	Pass
50.0	-13.1	-13.6	-12.6	-13.14	0.20	-0.04	Pass
20.0	-17.0	-17.5	-16.5	-17.06		-0.06	Pass
10.0	-20.0	-20.5	-19.5	-20.05		-0.05	Pass
5.0	-23.0	-23.5	-22.5	-23.05		-0.05	Pass
2.0	-27.0	-27.5	-26.5	-27.03		-0.03	Pass

SEL Response to Repeated Tonebursts (61672-1 § 5.9)

The sound level meter's SEL response to repeated tonebursts at 4.0 kHz is measured. The baseline input level is 3 dB less than full scale and the toneburst repetition rate is three times the toneburst duration.

Toneburst Duration: the length of time each burst lasts

Nominal Value: the value the sound level meter should indicate according to IEC 61672

Tolerance: the acceptable range, including the stated tolerance, for what the sound level meter should indicate according to IEC 61672 Data Found: the value the sound level meter actually indicates; equal to $L_{AFmax(toneburst)}$ - $L_{AF(steady-state)}$

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found

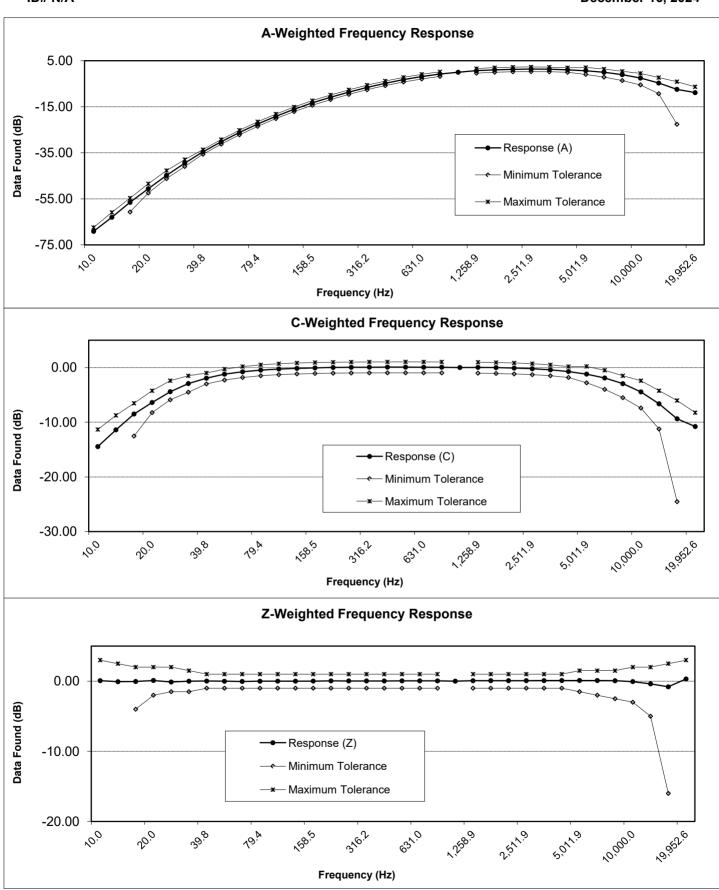
Pass/Fail	Deviation	Uncertainty	Data	nce (dB)	Tolera	Nominal	Toneburst	
Fass/Faii	(dB)	(dB)	Found (dB)	Maximum	Minimum	Value (dB)	Duration (ms)	
Pass	-0.05		-0.05	0.5	-0.5	0.0	1000.0	
Pass	-0.07		-3.07	-2.5	-3.5	-3.0	500.0	
Pass	-0.06		-7.06	-6.5	-7.5	-7.0	200.0	
Pass	-0.07		-10.07	-9.0	-11.0	-10.0	100.0	
Pass	-0.08		-13.08	-12.0	-14.0	-13.0	50.0	
Pass	-0.06	0.20	-17.06	-16.0	-18.0	-17.0	20.0	
Pass	-0.08	0.20	-20.08	-19.0	-21.0	-20.0	10.0	
Pass	-0.09		-23.09	-22.0	-24.0	-23.0	5.0	
Pass	-0.09		-27.09	-26.0	-28.5	-27.0	2.0	
Pass	-0.12		-30.12	-29.0	-32.0	-30.0	1.0	
Pass	-0.17		-33.17	-32.0	-35.5	-33.0	0.5	
Pass	-0.20		-36.20	-35.0	-39.0	-36.0	0.25	

Level Linearity (IEC 61672-3 § 14, IEC 61672-1 § 5.5.6)

Level linearity is tested in A-weighting at 8.0 kHz. Increasing input levels continue up to the first indication of overload. The test is continued with decreasing input levels down to the lower limit or the first indication of underrange.

Input Level: the level (amplitude) of the signal to the sound level meter

Nominal Value: the value the sound level meter should indicate according to IEC 61672


Tolerance: the acceptable difference from nominal, including the stated uncertainty, according to IEC 61672

Data Found: the value the sound level meter actually indicates

Uncertainty: maximum expanded uncertainty of measurement with approximately 95% confidence level (coverage factor k=2)

Deviation: the difference between the nominal value and the data found; differential: current and previous measurement is not allowed to exceed 0.5 dB according to IEC 61672-1 § 5.5.6

	0	Pa	rt 1: Increasing	Input Levels			
Input	Nominal	Tolerance	Data Found	Uncertainty	Deviat	ion (dB)	Pass/Fail
Level (dB)	Value (dB)	(± dB)	(dB)	(dB)	Measured	Differential	Pass/Fall
94.0	·			ference 1——		1	
99.0	99.0		98.99		-0.01	N/A	Pass
104.0	104.0		103.98		-0.02	-0.01	Pass
109.0	109.0		108.99		-0.01	0.01	Pass
114.0	114.0		113.97		-0.03	-0.02	Pass
119.0	119.0		118.99		-0.01	0.02	Pass
124.0	124.0		123.99		-0.01	0.02	Pass
124.0	124.0		128.99		-0.01	0.00	Pass
134.0	134.0		133.99		-0.01	0.00	Pass
139.0	139.0		138.98		-0.02	-0.01	Pass
140.0	140.0		Overload		N/A	N/A	N/A
141.0	141.0						
142.0	142.0						
143.0	143.0						
144.0	144.0	0.8		0.3			
145.0	145.0						
146.0	146.0						
147.0	147.0						
148.0	148.0						
149.0	149.0						
150.0	150.0						
151.0	151.0						
152.0	152.0						
153.0	153.0						
154.0	154.0						
155.0	155.0						
156.0	156.0						
157.0	157.0						
		Par	t 2: Decreasing	Input Levels			
Input	Nominal	Par Tolerance	t 2: Decreasing Data Found	Input Levels Uncertainty	Deviat	ion (dB)	Decc/Feil
Input	Nominal Value (dB)				Deviat Measured	ion (dB) Differential	Pass/Fail
		Tolerance	Data Found (dB)	Uncertainty			Pass/Fail
Input Level (dB)		Tolerance	Data Found (dB)	Uncertainty (dB)			Pass/Fail Pass
Input Level (dB) 139.0 134.0	Value (dB)	Tolerance	Data Found (dB) ——— Re t	Uncertainty (dB)	Measured	Differential	
Input Level (dB) 139.0	Value (dB) 	Tolerance	Data Found (dB) 134.01	Uncertainty (dB)	Measured 0.01	Differential N/A	Pass
Input Level (dB) 139.0 134.0 129.0 124.0	Value (dB) 134.0 129.0 124.0	Tolerance	Data Found (dB) 134.01 129.01 124.01	Uncertainty (dB)	Measured 0.01 0.01 0.01	Differential N/A 0.00 0.00	Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0	Value (dB) 134.0 129.0 124.0 119.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01	Differential N/A 0.00 0.00 0.00 0.00	Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0	Value (dB) 134.0 129.0 124.0 119.0 114.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01	Differential N/A 0.00 0.00 0.00 -0.02	Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Differential N/A 0.00 0.00 0.00 -0.02 0.02	Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Differential N/A 0.00 0.00 0.00 -0.02 0.02 -0.01	Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Differential N/A 0.00 0.00 -0.02 0.02 -0.01 0.01	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02	N/A 0.00 0.00 0.00 0.00 0.00 -0.02 0.02 -0.01 0.01	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.03	Differential N/A 0.00 0.00 -0.02 -0.02 -0.01 0.01 0.01 -0.05	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 89.0 84.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.03 -0.02	Differential N/A 0.00 0.00 -0.02 -0.02 -0.01 0.01 0.01 -0.05 0.01	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0	Tolerance	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 78.98	Uncertainty (dB)	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.02	Differential N/A 0.00 0.00 -0.02 -0.02 -0.01 0.01 0.01 -0.05 0.01 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 99.0 94.0 89.0 84.0 79.0 74.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 78.98 73.96	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.02 -0.02 -0.04	Differential N/A 0.00 0.00 -0.02 -0.01 0.01 0.01 -0.05 0.01 0.00 -0.02	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0	Tolerance	Data Found (dB) Ref 134.01 129.01 124.01 119.01 113.99 109.01 94.02 88.97 83.98 78.98 73.96 69.00	Uncertainty (dB)	Measured 0.01 0.01 0.01 -0.01 0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00	Differential N/A 0.00 0.00 -0.02 0.02 -0.01 0.01 0.01 -0.05 0.01 0.00 -0.02 0.04	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 78.98 73.96 69.00 63.99	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 -0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.02 -0.04 0.00 -0.01	Differential N/A 0.00 0.00 -0.02 -0.01 0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0	Tolerance (± dB)	Data Found (dB) Ref 134.01 129.01 124.01 119.01 113.99 109.01 99.01 94.02 88.97 83.98 78.98 73.96 69.00 63.99 58.99	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 -0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 -0.01 -0.01	Differential N/A 0.00 0.00 -0.02 -0.01 0.01 0.01 -0.05 0.01 0.01 0.00 -0.02 0.04 -0.01 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0	Tolerance (± dB)	Data Found (dB) Ret 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 78.98 73.96 69.00 63.99 58.99 54.01	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.03 -0.02 -0.04 0.00 -0.01 -0.01	Differential N/A 0.00 0.00 -0.02 0.02 -0.01 0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 -0.02 0.04 -0.01 0.00 0.02	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0	Tolerance (± dB)	Data Found (dB) Ref 134.01 129.01 124.01 119.01 113.99 109.01 94.02 88.97 83.98 78.98 73.96 69.00 63.99 58.99 54.01 48.98	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 -0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.04 0.00 -0.01 -0.01 0.01 -0.01 0.01 -0.02	Differential N/A 0.00 0.00 -0.02 0.02 -0.01 0.01 0.01 0.01 0.01 0.00 -0.02 0.04 -0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0	Tolerance (± dB)	Data Found (dB) Ref 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 73.96 69.00 63.99 58.99 54.01 48.98 43.98	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.04 0.00 -0.01 -0.01 0.01 -0.01 0.01 -0.02 -0.02 -0.02	Differential N/A 0.00 0.00 -0.02 0.02 -0.01 0.01 0.01 0.01 0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 78.98 73.96 69.00 63.99 58.99 54.01 48.98 43.98 38.99	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.03 -0.02 -0.04 0.00 -0.01 0.01 -0.02 -0.03 -0.02 -0.01 0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01	Differential N/A 0.00 0.00 0.00 -0.02 0.02 -0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 78.98 73.96 69.00 63.99 58.99 54.01 48.98 43.98 38.99 34.06	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 0.01 -0.01 0.01 0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.01 0.00 0.02 -0.02 -0.02 -0.01 0.01 0.00 0.01 0.00 -0.02 -0.02 -0.01 0.01 0.00 -0.01 0.00 -0.02 -0.02 -0.01 0.01 0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.02 -0.00 -0.01 0.06 -0.01 0.06 -0.01 0.06 -0.01 0.06 -0.01 0.06 -0.02 -0.01 0.06 -0.02 -0.02 -0.01 0.06 -0.02 -0.01 0.06 -0.02 -0.02 -0.01 0.06 -0.02 -0.02 -0.01 0.06 -0.02 -0.05	Differential N/A 0.00 0.00 0.00 -0.02 0.02 -0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01 0.07	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 73.96 69.00 63.99 54.01 48.98 43.98 38.99 54.01 48.98 38.99 34.06 29.17	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 -0.01 0.01 -0.01 0.01 0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.01 0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.06 0.01 -0.02 -0.01 0.06 0.01 -0.02 -0.01 0.06 0.01 -0.02 -0.01 0.06 0.01 -0.02 -0.01 0.06 0.17 -0.02 -0.01 0.06 0.17 -0.02 -0.01 0.06 0.17 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02 -0	Differential N/A 0.00 0.00 0.00 -0.02 0.02 -0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01 0.07 0.01 0.07 0.11	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 64.0 59.0 44.0 39.0 34.0 39.0 34.0 29.0 28.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 73.96 69.00 63.99 54.01 48.98 43.98 38.99 34.06 29.17 28.20	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 -0.01 0.01 -0.01 0.01 0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.04 0.01 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.01 0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.01 0.01 0.01 0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.01 0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.01 0.01 0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02	Differential N/A 0.00 0.00 0.00 -0.02 -0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01 0.07 0.11 0.03	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0 27.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 64.0 59.0 49.0 44.0 39.0 34.0 39.0 34.0 29.0 28.0 27.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 73.96 69.00 63.99 54.01 48.98 43.98 38.99 34.06 29.17 28.20 27.26	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 -0.01 0.01 -0.02 -0.02 -0.04 0.00 -0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.26 -	Differential N/A 0.00 0.00 0.00 -0.02 0.02 -0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01 0.07 0.01 0.07 0.11 0.03 0.06	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0 27.0 26.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0 27.0 26.0	Tolerance (± dB)	Data Found (dB) Ref 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 73.96 69.00 63.99 54.91 48.98 43.98 38.99 34.06 29.17 28.20 27.26 26.34	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 0.01 0.01 -0.02 -0.04 0.00 -0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.02 -0.03 -0.03 -0.02 -0.02 -0.03 -0.03 -0.02 -0.03 -0.02 -0.02 -0.03 -0.03 -0.02 -0.02 -0.03 -0.03 -0.02 -0.03 -0.03 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.05 -0.20 -0.26 -0.34 -0.	Differential N/A 0.00 0.00 0.00 -0.02 0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01 0.07 0.11 0.03 0.06 0.08	Pass Pass Pass Pass Pass Pass Pass Pass
Input Level (dB) 139.0 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 54.0 49.0 44.0 39.0 34.0 29.0 28.0 27.0	Value (dB) 134.0 129.0 124.0 119.0 114.0 109.0 104.0 99.0 94.0 89.0 84.0 79.0 74.0 69.0 64.0 59.0 64.0 59.0 49.0 44.0 39.0 34.0 39.0 34.0 29.0 28.0 27.0	Tolerance (± dB)	Data Found (dB) 134.01 129.01 124.01 119.01 113.99 109.01 104.00 99.01 94.02 88.97 83.98 73.96 69.00 63.99 54.01 48.98 43.98 38.99 34.06 29.17 28.20 27.26	Uncertainty (dB) ference 2	Measured 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 -0.03 -0.02 -0.02 -0.04 0.00 -0.01 -0.01 -0.01 0.01 -0.02 -0.02 -0.04 0.00 -0.01 0.01 0.02 -0.02 -0.02 -0.04 0.01 0.01 0.02 -0.02 -0.02 -0.01 0.01 0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 -0.26 -	Differential N/A 0.00 0.00 0.00 -0.02 0.02 -0.01 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.01 0.00 0.02 -0.03 0.00 0.01 0.07 0.01 0.07 0.11 0.03 0.06	Pass Pass Pass Pass Pass Pass Pass Pass

Odin Metrology, Inc. Report# OM2024-3 December 16, 2024

Level Verification of Filter+SLM (1/1 Octave)

For each 1/1 octave filter center frequency, it is verified that the meter indicates within the tolerance shown if the input frequency matches the center frequency.

Filter Center Frequency: center frequency setting on the filter

Input Frequency: frequency of the input signal to the filter

Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc.

Data Found: the level the sound level meter indicates

Filter Center	Input	Tolerance	Data	Result
Freq. (Hz)	Freq. (Hz)	(± dB)	Found (dB)	Result
15.6	15.6		-0.07	Pass
31.3	31.3		-0.07	Pass
62.5	62.5		0.03	Pass
125.0	125.0		0.01	Pass
250.0	250.0		-0.01	Pass
500.0	500.0	0.5	0.00	Pass
1,000.0	1,000.0		-0.01	Pass
2,000.0	2,000.0		-0.01	Pass
4,000.0	4,000.0		0.00	Pass
8,000.0	8,000.0		0.02	Pass
16,000.0	16,000.0		0.00	Pass

Level Verification of Filter+SLM (1/3 Octave)

For each 1/3 octave filter center frequency, it is verified that the meter indicates within the tolerance shown if the input frequency matches the center frequency.

Filter Center Frequency: center frequency setting on the filter

Input Frequency: frequency of the input signal to the filter

Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc.

Data Found: the level the sound level meter indicates

-					
	Filter Center	Input	Tolerance	Data	Result
_	Freq. (Hz)	Freq. (Hz)	(± dB)	Found (dB)	
_	12.4	12.4		0.22	Pass
	15.6	15.6		-0.11	Pass
_	19.7	19.7		0.04	Pass
_	24.8	24.8		-0.13	Pass
	31.3	31.3		0.06	Pass
_	39.4	39.4		-0.01	Pass
	49.6	49.6		0.05	Pass
_	62.5	62.5		0.01	Pass
_	78.7	78.7		0.01	Pass
_	99.2	99.2		-0.01	Pass
_	125.0	125.0		-0.03	Pass
_	157.5	157.5		0.00	Pass
_	198.4	198.4		-0.01	Pass
-	250.0	250.0		-0.01	Pass
_	315.0	315.0		-0.01	Pass
	396.9	396.9		0.00	Pass
	500.0	500.0	0.5	0.00	Pass
	630.0	630.0		-0.01	Pass
	793.7	793.7		-0.01	Pass
	1,000.0	1,000.0		-0.01	Pass
	1,259.9	1,259.9		0.00	Pass
_	1,587.4	1,587.4		-0.01	Pass
	2,000.0	2,000.0		-0.01	Pass
_	2,519.8	2,519.8		0.00	Pass
	3,174.8	3,174.8		0.00	Pass
_	4,000.0	4,000.0		0.00	Pass
	5,039.7	5,039.7		0.00	Pass
	6,349.6	6,349.6		0.01	Pass
_	8,000.0	8,000.0		0.02	Pass
	10,079.4	10,079.4		0.02	Pass
	12,699.2	12,699.2		0.01	Pass
_	16,000.0	16,000.0		0.00	Pass
	20,158.7	20,158.7		-0.01	Pass

Filter Check (1/1 Octave)

At each center frequency in 1/1 octave step size mode, frequencies equaling the center frequency plus and minus one half octave shall cause the filter to respond with attenuation within the limits stated below.

Filter Center Frequency: center frequency setting on the filter

Input Frequency: the input frequency to the filter calculated as plus and minus one half octave from the center Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc. Data Found: the level the sound level meter indicates

Filter Center Input Frequency (Hz) Tolerance (dB) Data Found (dB) Result Freq. (Hz) -1/2 Octave +1/2 Octave Minimum Maximum -1/2 Octave +1/2 Octave Result 15.6 11.1 22.1 -3.63 -3.57 Pass 31.3 22.1 44.1 -3.62 -3.56 Pass 62.5 44.2 88.3 -3.60 -3.58 Pass 125.0 88.5 176.6 -3.60 -3.58 Pass 250.0 177.0 353.1 -3.60 -3.59 Pass
Freq. (Hz) -1/2 Octave +1/2 Octave Minimum Maximum -1/2 Octave +1/2 Octave 15.6 11.1 22.1 -3.63 -3.57 Pass 31.3 22.1 44.1 -3.62 -3.56 Pass 62.5 44.2 88.3 -3.60 -3.58 Pass 125.0 88.5 176.6 -3.60 -3.58 Pass
31.3 22.1 44.1 -3.62 -3.56 Pass 62.5 44.2 88.3 -3.60 -3.58 Pass 125.0 88.5 176.6 -3.60 -3.58 Pass
62.5 44.2 88.3 -3.60 -3.58 Pass 125.0 88.5 176.6 -3.60 -3.58 Pass
125.0 88.5 176.6 -3.60 -3.58 Pass
250.0 177.0 353.1 -3.60 -3.59 Pass
500.0 354.0 706.3 -5.7 -1.2 -3.60 -3.59 Pass
1,000.0 707.9 1,412.5 -3.7 -1.2 -3.60 -3.58 Pass
2,000.0 1,415.9 2,825.1 -3.60 -3.57 Pass
4,000.0 2,831.8 5,650.2 -3.62 -3.58 Pass
8,000.0 5,663.6 11,300.3 -3.57 -3.85 Pass
16,000.0 11,327.1 22,600.6 N/A N/A N/A

Filter Check (1/3 Octave)

At each center frequency in 1/3 octave bandwidth, frequencies equaling the center frequency plus and minus one sixth octave shall cause the filter to respond with attenuation within the limits stated below.

Filter Center Frequency: center frequency setting on the filter

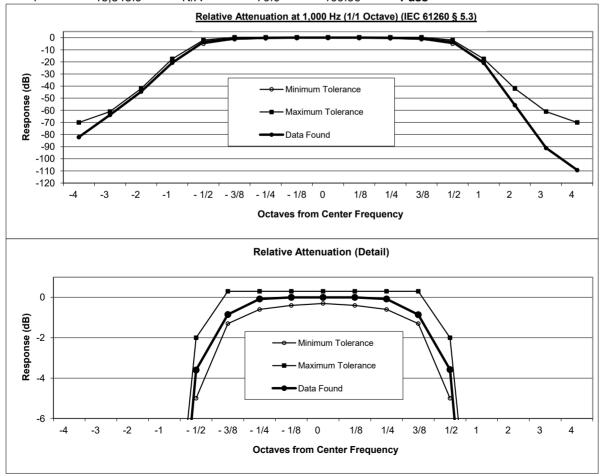
Input Frequency: the input frequency to the filter calculated as plus and minus one sixth octave from the Tolerance: the acceptable range for what the filter should indicate according to Odin Metrology, Inc.

Data Found: the level the sound level meter indicates

-			uency (Hz)		nce (dB)	Data Ea	und (dB)	
	Filter Center		• • •		. ,		· · ·	Result
-	Freq. (Hz)		+1/6 Octave	Minimum	Maximum		+1/6 Octave	
_	12.4	11.1	13.9			N/A	N/A	N/A
	15.6	13.9	17.5			N/A	N/A	N/A
_	19.7	17.5	22.1			N/A	N/A	N/A
	24.8	22.1	27.8			-3.7	-3.6	Pass
_	31.3	27.9	35.1			-3.6	-3.6	Pass
	39.4	35.1	44.2			-3.6	-3.6	Pass
_	49.6	44.2	55.7			-3.6	-3.6	Pass
	62.5	55.7	70.1			-3.6	-3.7	Pass
	78.7	70.2	88.4			-3.6	-3.7	Pass
	99.2	88.4	111.3			-3.7	-3.7	Pass
_	125.0	111.4	140.3			-3.6	-3.7	Pass
	157.5	140.4	176.7			-3.6	-3.6	Pass
	198.4	176.8	222.6			-3.6	-3.6	Pass
	250.0	222.8	280.5			-3.6	-3.7	Pass
	315.0	280.7	353.4			-3.6	-3.6	Pass
	396.9	353.7	445.3			-3.6	-3.6	Pass
	500.0	445.6	561.0	-5.7	-1.2	-3.7	-3.7	Pass
	630.0	561.5	706.8			-3.6	-3.7	Pass
	793.7	707.4	890.5			-3.6	-3.7	Pass
	1,000.0	891.3	1,122.0			-3.6	-3.7	Pass
	1,259.9	1,122.9	1,413.7			-3.6	-3.6	Pass
	1,587.4	1,414.8	1,781.1			-3.6	-3.7	Pass
-	2,000.0	1,782.5	2,244.0			-3.6	-3.7	Pass
	2,519.8	2,245.8	2,827.3			-3.6	-3.6	Pass
_	3,174.8	2,829.5	3,562.2			-3.6	-3.6	Pass
	4,000.0	3,565.0	4,488.1			-3.7	-3.7	Pass
-	5,039.7	4,491.6	5,654.6			-3.7	-3.6	Pass
	6,349.6	5,659.1	7,124.4			-3.6	-3.7	Pass
-	8,000.0	7,130.0	8,976.1			-3.6	-3.7	Pass
	10,079.4	8,983.2	11,309.2			-3.6	-3.8	Pass
_	12,699.2	11,318.2	14,248.7			-3.4	-3.9	Pass
	16,000.0	14,260.0	17,952.3			N/A	N/A	N/A
_	20,158.7	17,966.5	22,618.5			N/A	N/A	N/A
						-		

Relative Attenuation at 1,000 Hz (1/1 Octave) (IEC 61260 § 5.3)

The attenuation of the filter at the given frequencies shall be within the stated tolerance. The frequencies are calculated as octaves from the center frequency. The factors defined by IEC 61260 (Table 1) are: ± 4 , ± 3 , ± 2 , ± 1 , $\pm 1/2$, $\pm 3/8$, $\pm 1/4$, $\pm 1/8$ and 0.


Octaves from Center Frequency: the difference, in octaves, between the selected center frequency (1,000 Hz) and the current input frequency

Input Frequency: the input frequency to the filter

Tolerance: the acceptable range for what the filter should indicate according to IEC 61260

Data Found: the level the sound level meter indicates

Octaves from	Input	Tolerance (dB) Minimum Maximum		Data	Result	
Center Freq.	Freq. (Hz)			Found (dB)	Result	
-4	63.1	N/A	-70.0	-82.14	Pass	
-3	125.9	N/A	-61.0	-63.82	Pass	
-2	251.2	N/A	-42.0	-44.54	Pass	
-1	501.2	N/A	-17.5	-20.70	Pass	
- 1/2	707.9	-5.0	-2.0	-3.60	Pass	
- 3/8	771.8	-1.3	0.3	-0.85	Pass	
- 1/4	841.4	-0.6	0.3	-0.08	Pass	
- 1/8	917.3	-0.4	0.3	0.00	Pass	
0	1,000.0	-0.3	0.3	0.00	Pass	
1/8	1,090.2	-0.4	0.3	0.00	Pass	
1/4	1,188.5	-0.6	0.3	-0.08	Pass	
3/8	1,295.7	-1.3	0.3	-0.86	Pass	
1/2	1,412.5	-5.0	-2.0	-3.58	Pass	
1	1,995.3	N/A	-17.5	-20.82	Pass	
2	3,981.1	N/A	-42.0	-55.77	Pass	
3	7,943.3	N/A	-61.0	-91.12	Pass	
4	15,848.9	N/A	-70.0	-109.36	Pass	

